Dual Aspect Self-Attention based on Transformer for Remaining Useful Life Prediction

30 Jun 2021  ·  Zhizheng Zhang, Wen Song, Qiqiang Li ·

Remaining useful life prediction (RUL) is one of the key technologies of condition-based maintenance, which is important to maintain the reliability and safety of industrial equipments. Massive industrial measurement data has effectively improved the performance of the data-driven based RUL prediction method. While deep learning has achieved great success in RUL prediction, existing methods have difficulties in processing long sequences and extracting information from the sensor and time step aspects. In this paper, we propose Dual Aspect Self-attention based on Transformer (DAST), a novel deep RUL prediction method, which is an encoder-decoder structure purely based on self-attention without any RNN/CNN module. DAST consists of two encoders, which work in parallel to simultaneously extract features of different sensors and time steps. Solely based on self-attention, the DAST encoders are more effective in processing long data sequences, and are capable of adaptively learning to focus on more important parts of input. Moreover, the parallel feature extraction design avoids mutual influence of information from two aspects. Experiments on two widely used turbofan engines datasets show that our method significantly outperforms the state-of-the-art RUL prediction methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods