Dual Coordinate Descent Algorithms for Efficient Large Margin Structured Prediction

TACL 2013  ·  Ming-Wei Chang, Wen-tau Yih ·

Due to the nature of complex NLP problems, structured prediction algorithms have been important modeling tools for a wide range of tasks. While there exists evidence showing that linear Structural Support Vector Machine (SSVM) algorithm performs better than structured Perceptron, the SSVM algorithm is still less frequently chosen in the NLP community because of its relatively slow training speed. In this paper, we propose a fast and easy-to-implement dual coordinate descent algorithm for SSVMs. Unlike algorithms such as Perceptron and stochastic gradient descent, our method keeps track of dual variables and updates the weight vector more aggressively. As a result, this training process is as efficient as existing online learning methods, and yet derives consistently better models, as evaluated on four benchmark NLP datasets for part-of-speech tagging, named-entity recognition and dependency parsing.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here