DynaMarks: Defending Against Deep Learning Model Extraction Using Dynamic Watermarking

27 Jul 2022  ·  Abhishek Chakraborty, Daniel Xing, Yuntao Liu, Ankur Srivastava ·

The functionality of a deep learning (DL) model can be stolen via model extraction where an attacker obtains a surrogate model by utilizing the responses from a prediction API of the original model. In this work, we propose a novel watermarking technique called DynaMarks to protect the intellectual property (IP) of DL models against such model extraction attacks in a black-box setting. Unlike existing approaches, DynaMarks does not alter the training process of the original model but rather embeds watermark into a surrogate model by dynamically changing the output responses from the original model prediction API based on certain secret parameters at inference runtime. The experimental outcomes on Fashion MNIST, CIFAR-10, and ImageNet datasets demonstrate the efficacy of DynaMarks scheme to watermark surrogate models while preserving the accuracies of the original models deployed in edge devices. In addition, we also perform experiments to evaluate the robustness of DynaMarks against various watermark removal strategies, thus allowing a DL model owner to reliably prove model ownership.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here