Dynamic Clustering Algorithms via Small-Variance Analysis of Markov Chain Mixture Models

26 Jul 2017  ·  Trevor Campbell, Brian Kulis, Jonathan How ·

Bayesian nonparametrics are a class of probabilistic models in which the model size is inferred from data. A recently developed methodology in this field is small-variance asymptotic analysis, a mathematical technique for deriving learning algorithms that capture much of the flexibility of Bayesian nonparametric inference algorithms, but are simpler to implement and less computationally expensive. Past work on small-variance analysis of Bayesian nonparametric inference algorithms has exclusively considered batch models trained on a single, static dataset, which are incapable of capturing time evolution in the latent structure of the data. This work presents a small-variance analysis of the maximum a posteriori filtering problem for a temporally varying mixture model with a Markov dependence structure, which captures temporally evolving clusters within a dataset. Two clustering algorithms result from the analysis: D-Means, an iterative clustering algorithm for linearly separable, spherical clusters; and SD-Means, a spectral clustering algorithm derived from a kernelized, relaxed version of the clustering problem. Empirical results from experiments demonstrate the advantages of using D-Means and SD-Means over contemporary clustering algorithms, in terms of both computational cost and clustering accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here