Dynamic Future Net: Diversified Human Motion Generation

25 Aug 2020  ·  Wenheng Chen, He Wang, Yi Yuan, Tianjia Shao, Kun Zhou ·

Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality. Acquiring high-quality skeletal motions is difficult due to the need for specialized equipment and laborious manual post-posting, which necessitates maximizing the use of existing data to synthesize new data. However, it is a challenge due to the intrinsic motion stochasticity of human motion dynamics, manifested in the short and long terms. In the short term, there is strong randomness within a couple frames, e.g. one frame followed by multiple possible frames leading to different motion styles; while in the long term, there are non-deterministic action transitions. In this paper, we present Dynamic Future Net, a new deep learning model where we explicitly focuses on the aforementioned motion stochasticity by constructing a generative model with non-trivial modelling capacity in temporal stochasticity. Given limited amounts of data, our model can generate a large number of high-quality motions with arbitrary duration, and visually-convincing variations in both space and time. We evaluate our model on a wide range of motions and compare it with the state-of-the-art methods. Both qualitative and quantitative results show the superiority of our method, for its robustness, versatility and high-quality.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here