Dynamic Relational Inference in Multi-Agent Trajectories

16 Jul 2020  ·  Ruichao Xiao, Manish Kumar Singh, Rose Yu ·

Inferring interactions from multi-agent trajectories has broad applications in physics, vision and robotics. Neural relational inference (NRI) is a deep generative model that can reason about relations in complex dynamics without supervision. In this paper, we take a careful look at this approach for relational inference in multi-agent trajectories. First, we discover that NRI can be fundamentally limited without sufficient long-term observations. Its ability to accurately infer interactions degrades drastically for short output sequences. Next, we consider a more general setting of relational inference when interactions are changing overtime. We propose an extension ofNRI, which we call the DYnamic multi-AgentRelational Inference (DYARI) model that can reason about dynamic relations. We conduct exhaustive experiments to study the effect of model architecture, under-lying dynamics and training scheme on the performance of dynamic relational inference using a simulated physics system. We also showcase the usage of our model on real-world multi-agent basketball trajectories.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here