Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning

21 Mar 2020Shaoxiong JiWenqi JiangAnwar WalidXue Li

Federated learning (FL) is a novel machine learning setting which enables on-device intelligence via decentralized training and federated optimization. The rapid development of deep neural networks facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet