Minimizing the AoI in Resource-Constrained Multi-Source Relaying Systems: Dynamic and Learning-based Scheduling

10 Mar 2022  ·  Abolfazl Zakeri, Mohammad Moltafet, Markus Leinonen, Marian Codreanu ·

We consider a multi-source relaying system where independent sources randomly generate status update packets which are sent to the destination with the aid of a relay through unreliable links. We develop transmission scheduling policies to minimize the weighted sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints. We formulate a stochastic control optimization problem and solve it using a constrained Markov decision process (CMDP) approach and a drift-plus-penalty method. The CMDP problem is solved by transforming it into an MDP problem using the Lagrangian relaxation method. We theoretically analyze the structure of optimal policies for the MDP problem and subsequently propose a structure-aware algorithm that returns a practical near-optimal policy. Using the drift-plus-penalty method, we devise a near-optimal low-complexity policy that performs the scheduling decisions dynamically. We also develop a model-free deep reinforcement learning policy for which the Lyapunov optimization theory and a dueling double deep Q-network are employed. The complexities of the proposed policies are analyzed. Simulation results are provided to assess the performance of our policies and validate the theoretical results. The results show up to 91% performance improvement compared to a baseline policy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here