Dynamic temperature selection for parallel-tempering in Markov chain Monte Carlo simulations

23 Jan 2015Will VousdenWill M. FarrIlya Mandel

Modern problems in astronomical Bayesian inference require efficient methods for sampling from complex, high-dimensional, often multi-modal probability distributions. Most popular methods, such as Markov chain Monte Carlo sampling, perform poorly on strongly multi-modal probability distributions, rarely jumping between modes or settling on just one mode without finding others... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet