Dynamic Write-Voltage Design and Read-Voltage Optimization for MLC NAND Flash Memory

3 Sep 2022  ·  Runbin Cai, Yi Fang, Zhifang Shi, Lin Dai, Guojun Han ·

To mitigate the impact of noise and interference on multi-level-cell (MLC) flash memory with the use of low-density parity-check (LDPC) codes, we propose a dynamic write-voltage design scheme considering the asymmetric property of raw bit error rate (RBER), which can obtain the optimal write voltage by minimizing a cost function. In order to further improve the decoding performance of flash memory, we put forward a low-complexity entropy-based read-voltage optimization scheme, which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio (LLR)-aware cost function. Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here