Dynamical mass inference of galaxy clusters with neural flows

12 Mar 2020  ·  Doogesh Kodi Ramanah, Radosław Wojtak, Zoe Ansari, Christa Gall, Jens Hjorth ·

We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, i.e. the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method employs neural flows, a deep neural network capable of learning arbitrary high-dimensional probability distributions, and inherently accounts, to an adequate extent, for the presence of interloper galaxies which are not bounded to a given cluster, the primary contaminant of dynamical mass measurements. We validate and showcase the performance of our neural flow approach to robustly infer the dynamical mass of clusters from a realistic mock cluster catalogue. A key aspect of our novel algorithm is that it yields the probability density function of the mass of a particular cluster, thereby providing a principled way of quantifying uncertainties, in contrast to conventional machine learning approaches. The neural network mass predictions, when applied to a contaminated catalogue with interlopers, have a logarithmic residual scatter which goes down to 0.043 dex for the most massive clusters. This is nearly an order of magnitude improvement over the classical cluster mass scaling relation with the velocity dispersion, and outperforms recently proposed machine learning approaches. We also apply our neural flow mass estimator to a compilation of galaxy observations of some well-studied clusters with robust dynamical mass estimates, further substantiating the efficacy of our algorithm. Such sophisticated approaches would undoubtedly be relevant for robust and efficient dynamical mass inference from upcoming surveys covering unprecedented volumes of the sky.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies Instrumentation and Methods for Astrophysics