$ε$-Arithmetics for Real Vectors and Linear Processing of Real Vector-Valued Signals with Real Vector-Valued Coefficients

16 Feb 2021  ·  Xiang-Gen Xia ·

In this paper, we introduce a new concept, namely $\epsilon$-arithmetics, for real vectors of any fixed dimension. The basic idea is to use vectors of rational values (called rational vectors) to approximate vectors of real values of the same dimension within $\epsilon$ range. For rational vectors of a fixed dimension $m$, they can form a field that is an $m$th order extension $\mathbf{Q}(\alpha)$ of the rational field $\mathbf{Q}$ where $\alpha$ has its minimal polynomial of degree $m$ over $\mathbf{Q}$. Then, the arithmetics, such as addition, subtraction, multiplication, and division, of real vectors can be defined by using that of their approximated rational vectors within $\epsilon$ range. We also define complex conjugate of a real vector and then inner product and convolutions of two real vectors and two real vector sequences (signals) of finite length. With these newly defined concepts for real vectors, linear processing, such as filtering, ARMA modeling, and least squares fitting, with real vector-valued coefficients can be implemented to real vector-valued signals, which will broaden the existing linear processing to scalar-valued signals.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Information Theory Information Theory

Datasets


  Add Datasets introduced or used in this paper