EasyASR: A Distributed Machine Learning Platform for End-to-end Automatic Speech Recognition

14 Sep 2020  ·  Chengyu Wang, Mengli Cheng, Xu Hu, Jun Huang ·

We present EasyASR, a distributed machine learning platform for training and serving large-scale Automatic Speech Recognition (ASR) models, as well as collecting and processing audio data at scale. Our platform is built upon the Machine Learning Platform for AI of Alibaba Cloud... Its main functionality is to support efficient learning and inference for end-to-end ASR models on distributed GPU clusters. It allows users to learn ASR models with either pre-defined or user-customized network architectures via simple user interface. On EasyASR, we have produced state-of-the-art results over several public datasets for Mandarin speech recognition. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here