eCommerceGAN : A Generative Adversarial Network for E-commerce

10 Jan 2018  ·  Ashutosh Kumar, Arijit Biswas, Subhajit Sanyal ·

E-commerce companies such as Amazon, Alibaba and Flipkart process billions of orders every year. However, these orders represent only a small fraction of all plausible orders. Exploring the space of all plausible orders could help us better understand the relationships between the various entities in an e-commerce ecosystem, namely the customers and the products they purchase. In this paper, we propose a Generative Adversarial Network (GAN) for orders made in e-commerce websites. Once trained, the generator in the GAN could generate any number of plausible orders. Our contributions include: (a) creating a dense and low-dimensional representation of e-commerce orders, (b) train an ecommerceGAN (ecGAN) with real orders to show the feasibility of the proposed paradigm, and (c) train an ecommerce-conditional-GAN (ec^2GAN) to generate the plausible orders involving a particular product. We propose several qualitative methods to evaluate ecGAN and demonstrate its effectiveness. The ec^2GAN is used for various kinds of characterization of possible orders involving a product that has just been introduced into the e-commerce system. The proposed approach ec^2GAN performs significantly better than the baseline in most of the scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods