Economics of Semantic Communication System: An Auction Approach

Semantic communication technologies enable wireless edge devices to communicate effectively by transmitting semantic meaning of data. Edge components, such as vehicles in next-generation intelligent transport systems, use well-trained semantic models to encode and decode semantic information extracted from raw and sensor data. However, the limitation in computing resources makes it difficult to support the training process of accurate semantic models on edge devices. As such, edge devices can buy the pretrained semantic models from semantic model providers, which is called "semantic model trading". Upon collecting semantic information with the semantic models, the edge devices can then sell the extracted semantic information, e.g., information about urban road conditions or traffic signs, to the interested buyers for profit, which is called "semantic information trading". To facilitate both types of the trades, effective incentive mechanisms should be designed. Thus, in this paper, we propose a hierarchical trading system to support both semantic model trading and semantic information trading jointly. The proposed incentive mechanism helps to maximize the revenue of semantic model providers in the semantic model trading, and effectively incentivizes model providers to participate in the development of semantic communication systems. For semantic information trading, our designed auction approach can support the trading between multiple semantic information sellers and buyers, while ensuring individual rationality, incentive compatibility, and budget balance, and moreover, allowing them achieve higher utilities than the baseline method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here