Client-Edge-Cloud Hierarchical Federated Learning

16 May 2019  ·  Lumin Liu, Jun Zhang, S. H. Song, Khaled B. Letaief ·

Federated Learning is a collaborative machine learning framework to train a deep learning model without accessing clients' private data. Previous works assume one central parameter server either at the cloud or at the edge. The cloud server can access more data but with excessive communication overhead and long latency, while the edge server enjoys more efficient communications with the clients. To combine their advantages, we propose a client-edge-cloud hierarchical Federated Learning system, supported with a HierFAVG algorithm that allows multiple edge servers to perform partial model aggregation. In this way, the model can be trained faster and better communication-computation trade-offs can be achieved. Convergence analysis is provided for HierFAVG and the effects of key parameters are also investigated, which lead to qualitative design guidelines. Empirical experiments verify the analysis and demonstrate the benefits of this hierarchical architecture in different data distribution scenarios. Particularly, it is shown that by introducing the intermediate edge servers, the model training time and the energy consumption of the end devices can be simultaneously reduced compared to cloud-based Federated Learning.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here