EdgeEar: Efficient and Accurate Ear Recognition for Edge Devices

11 Feb 2025  ·  Camile Lendering, Bernardo Perrone Ribeiro, Žiga Emeršič, Peter Peer ·

Ear recognition is a contactless and unobtrusive biometric technique with applications across various domains. However, deploying high-performing ear recognition models on resource-constrained devices is challenging, limiting their applicability and widespread adoption. This paper introduces EdgeEar, a lightweight model based on a proposed hybrid CNN-transformer architecture to solve this problem. By incorporating low-rank approximations into specific linear layers, EdgeEar reduces its parameter count by a factor of 50 compared to the current state-of-the-art, bringing it below two million while maintaining competitive accuracy. Evaluation on the Unconstrained Ear Recognition Challenge (UERC2023) benchmark shows that EdgeEar achieves the lowest EER while significantly reducing computational costs. These findings demonstrate the feasibility of efficient and accurate ear recognition, which we believe will contribute to the wider adoption of ear biometrics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here