Paper

EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks

Dropout is a well-known regularization method by sampling a sub-network from a larger deep neural network and training different sub-networks on different subsets of the data. Inspired by the dropout concept, we propose EDropout as an energy-based framework for pruning neural networks in classification tasks. In this approach, a set of binary pruning state vectors (population) represents a set of corresponding sub-networks from an arbitrary provided original neural network. An energy loss function assigns a scalar energy loss value to each pruning state. The energy-based model stochastically evolves the population to find states with lower energy loss. The best pruning state is then selected and applied to the original network. Similar to dropout, the kept weights are updated using backpropagation in a probabilistic model. The energy-based model again searches for better pruning states and the cycle continuous. Indeed, this procedure is in fact switching between the energy model, which manages the pruning states, and the probabilistic model, which updates the temporarily unpruned weights, in each iteration. The population can dynamically converge to a pruning state. This can be interpreted as dropout leading to pruning the network. From an implementation perspective, EDropout can prune typical neural networks without modification of the network architecture. We evaluated the proposed method on different flavours of ResNets, AlexNet, and SqueezeNet on the Kuzushiji, Fashion, CIFAR-10, CIFAR-100, and Flowers datasets, and compared the pruning rate and classification performance of the models. On average the networks trained with EDropout achieved a pruning rate of more than $50\%$ of the trainable parameters with approximately $<5\%$ and $<1\%$ drop of Top-1 and Top-5 classification accuracy, respectively.

Results in Papers With Code
(↓ scroll down to see all results)