Effective Image Retrieval via Multilinear Multi-index Fusion

27 Sep 2017  ·  Zhizhong Zhang, Yuan Xie, Wensheng Zhang, Qi Tian ·

Multi-index fusion has demonstrated impressive performances in retrieval task by integrating different visual representations in a unified framework. However, previous works mainly consider propagating similarities via neighbor structure, ignoring the high order information among different visual representations. In this paper, we propose a new multi-index fusion scheme for image retrieval. By formulating this procedure as a multilinear based optimization problem, the complementary information hidden in different indexes can be explored more thoroughly. Specially, we first build our multiple indexes from various visual representations. Then a so-called index-specific functional matrix, which aims to propagate similarities, is introduced for updating the original index. The functional matrices are then optimized in a unified tensor space to achieve a refinement, such that the relevant images can be pushed more closer. The optimization problem can be efficiently solved by the augmented Lagrangian method with theoretical convergence guarantee. Unlike the traditional multi-index fusion scheme, our approach embeds the multi-index subspace structure into the new indexes with sparse constraint, thus it has little additional memory consumption in online query stage. Experimental evaluation on three benchmark datasets reveals that the proposed approach achieves the state-of-the-art performance, i.e., N-score 3.94 on UKBench, mAP 94.1\% on Holiday and 62.39\% on Market-1501.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here