Efficient 2D-to-3D Correspondence Filtering for Scalable 3D Object Recognition

3D model-based object recognition has been a noticeable research trend in recent years. Common methods find 2D-to-3D correspondences and make recognition decisions by pose estimation, whose efficiency usually suffers from noisy correspondences caused by the increasing number of target objects. To overcome this scalability bottleneck, we propose an efficient 2D-to-3D correspondence filtering approach, which combines a light-weight neighborhoodbased step with a finer-grained pairwise step to remove spurious correspondences based on 2D/3D geometric cues. On a dataset of 300 3D objects, our solution achieves ~10 times speed improvement over the baseline, with a comparable recognition accuracy. A parallel implementation on a quad-core CPU can run at ~3fps for 1280x720 images.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.