Efficient anomaly detection using bipartite k-NN graphs

NeurIPS 2011  ·  Kumar Sricharan, Alfred O. Hero ·

Learning minimum volume sets of an underlying nominal distribution is a very effective approach to anomaly detection. Several approaches to learning minimum volume sets have been proposed in the literature, including the K-point nearest neighbor graph (K-kNNG) algorithm based on the geometric entropy minimization (GEM) principle [4]. The K-kNNG detector, while possessing several desirable characteristics, suffers from high computation complexity, and in [4] a simpler heuristic approximation, the leave-one-out kNNG (L1O-kNNG) was proposed. In this paper, we propose a novel bipartite k-nearest neighbor graph (BP-kNNG) anomaly detection scheme for estimating minimum volume sets. Our bipartite estimator retains all the desirable theoretical properties of the K-kNNG, while being computationally simpler than the K-kNNG and the surrogate L1O-kNNG detectors. We show that BP-kNNG is asymptotically consistent in recovering the p-value of each test point. Experimental results are given that illustrate the superior performance of BP-kNNG as compared to the L1O-kNNG and other state of the art anomaly detection schemes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here