Efficient Approximate Inference with Walsh-Hadamard Variational Inference

29 Nov 2019  ·  Simone Rossi, Sebastien Marmin, Maurizio Filippone ·

Variational inference offers scalable and flexible tools to tackle intractable Bayesian inference of modern statistical models like Bayesian neural networks and Gaussian processes. For largely over-parameterized models, however, the over-regularization property of the variational objective makes the application of variational inference challenging. Inspired by the literature on kernel methods, and in particular on structured approximations of distributions of random matrices, this paper proposes Walsh-Hadamard Variational Inference, which uses Walsh-Hadamard-based factorization strategies to reduce model parameterization, accelerate computations, and increase the expressiveness of the approximate posterior beyond fully factorized ones.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here