Efficient Continuous Pareto Exploration in Multi-Task Learning

ICML 2020  ·  Pingchuan Ma, Tao Du, Wojciech Matusik ·

Tasks in multi-task learning often correlate, conflict, or even compete with each other. As a result, a single solution that is optimal for all tasks rarely exists. Recent papers introduced the concept of Pareto optimality to this field and directly cast multi-task learning as multi-objective optimization problems, but solutions returned by existing methods are typically finite, sparse, and discrete. We present a novel, efficient method that generates locally continuous Pareto sets and Pareto fronts, which opens up the possibility of continuous analysis of Pareto optimal solutions in machine learning problems. We scale up theoretical results in multi-objective optimization to modern machine learning problems by proposing a sample-based sparse linear system, for which standard Hessian-free solvers in machine learning can be applied. We compare our method to the state-of-the-art algorithms and demonstrate its usage of analyzing local Pareto sets on various multi-task classification and regression problems. The experimental results confirm that our algorithm reveals the primary directions in local Pareto sets for trade-off balancing, finds more solutions with different trade-offs efficiently, and scales well to tasks with millions of parameters.

PDF Abstract ICML 2020 PDF

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here