Efficient Covariance Estimation from Temporal Data

30 May 2019  ·  Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan ·

Estimating the covariance structure of multivariate time series is a fundamental problem with a wide-range of real-world applications -- from financial modeling to fMRI analysis. Despite significant recent advances, current state-of-the-art methods are still severely limited in terms of scalability, and do not work well in high-dimensional undersampled regimes. In this work we propose a novel method called Temporal Correlation Explanation, or T-CorEx, that (a) has linear time and memory complexity with respect to the number of variables, and can scale to very large temporal datasets that are not tractable with existing methods; (b) gives state-of-the-art results in highly undersampled regimes on both synthetic and real-world datasets; and (c) makes minimal assumptions about the character of the dynamics of the system. T-CorEx optimizes an information-theoretic objective function to learn a latent factor graphical model for each time period and applies two regularization techniques to induce temporal consistency of estimates. We perform extensive evaluation of T-Corex using both synthetic and real-world data and demonstrate that it can be used for detecting sudden changes in the underlying covariance matrix, capturing transient correlations and analyzing extremely high-dimensional complex multivariate time series such as high-resolution fMRI data.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here