Efficient data augmentation using graph imputation neural networks

20 Jun 2019  ·  Indro Spinelli, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini ·

Recently, data augmentation in the semi-supervised regime, where unlabeled data vastly outnumbers labeled data, has received a considerable attention. In this paper, we describe an efficient technique for this task, exploiting a recent framework we proposed for missing data imputation called graph imputation neural network (GINN). The key idea is to leverage both supervised and unsupervised data to build a graph of similarities between points in the dataset. Then, we augment the dataset by severely damaging a few of the nodes (up to 80\% of their features), and reconstructing them using a variation of GINN. On several benchmark datasets, we show that our method can obtain significant improvements compared to a fully-supervised model, and we are able to augment the datasets up to a factor of 10x. This points to the power of graph-based neural networks to represent structural affinities in the samples for tasks of data reconstruction and augmentation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here