Efficient Differentiable Neural Architecture Search with Meta Kernels

10 Dec 2019  ·  Shoufa Chen, Yunpeng Chen, Shuicheng Yan, Jiashi Feng ·

The searching procedure of neural architecture search (NAS) is notoriously time consuming and cost prohibitive.To make the search space continuous, most existing gradient-based NAS methods relax the categorical choice of a particular operation to a softmax over all possible operations and calculate the weighted sum of multiple features, resulting in a large memory requirement and a huge computation burden. In this work, we propose an efficient and novel search strategy with meta kernels. We directly encode the supernet from the perspective on convolution kernels and "shrink" multiple convolution kernel candidates into a single one before these candidates operate on the input feature. In this way, only a single feature is generated between two intermediate nodes. The memory for storing intermediate features and the resource budget for conducting convolution operations are both reduced remarkably. Despite high efficiency, our search strategy can search in a more fine-grained way than existing works and increases the capacity for representing possible networks. We demonstrate the effectiveness of our search strategy by conducting extensive experiments. Specifically, our method achieves 77.0% top-1 accuracy on ImageNet benchmark dataset with merely 357M FLOPs, outperforming both EfficientNet and MobileNetV3 under the same FLOPs constraints. Compared to models discovered by the start-of-the-art NAS method, our method achieves the same (sometimes even better) performance, while faster by three orders of magnitude.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here