Efficient Federated Learning for AIoT Applications Using Knowledge Distillation

29 Nov 2021  ·  Tian Liu, Zhiwei Ling, Jun Xia, Xin Fu, Shui Yu, Mingsong Chen ·

As a promising distributed machine learning paradigm, Federated Learning (FL) trains a central model with decentralized data without compromising user privacy, which has made it widely used by Artificial Intelligence Internet of Things (AIoT) applications. However, the traditional FL suffers from model inaccuracy since it trains local models using hard labels of data and ignores useful information of incorrect predictions with small probabilities. Although various solutions try to tackle the bottleneck of the traditional FL, most of them introduce significant communication and memory overhead, making the deployment of large-scale AIoT devices a great challenge. To address the above problem, this paper presents a novel Distillation-based Federated Learning (DFL) architecture that enables efficient and accurate FL for AIoT applications. Inspired by Knowledge Distillation (KD) that can increase the model accuracy, our approach adds the soft targets used by KD to the FL model training, which occupies negligible network resources. The soft targets are generated by local sample predictions of each AIoT device after each round of local training and used for the next round of model training. During the local training of DFL, both soft targets and hard labels are used as approximation objectives of model predictions to improve model accuracy by supplementing the knowledge of soft targets. To further improve the performance of our DFL model, we design a dynamic adjustment strategy for tuning the ratio of two loss functions used in KD, which can maximize the use of both soft targets and hard labels. Comprehensive experimental results on well-known benchmarks show that our approach can significantly improve the model accuracy of FL with both Independent and Identically Distributed (IID) and non-IID data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods