Efficient Learning of Domain-invariant Image Representations

15 Jan 2013  ·  Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, Kate Saenko ·

We present an algorithm that learns representations which explicitly compensate for domain mismatch and which can be efficiently realized as linear classifiers. Specifically, we form a linear transformation that maps features from the target (test) domain to the source (training) domain as part of training the classifier. We optimize both the transformation and classifier parameters jointly, and introduce an efficient cost function based on misclassification loss. Our method combines several features previously unavailable in a single algorithm: multi-class adaptation through representation learning, ability to map across heterogeneous feature spaces, and scalability to large datasets. We present experiments on several image datasets that demonstrate improved accuracy and computational advantages compared to previous approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here