Efficient learning with robust gradient descent

1 Jun 2017  ·  Matthew J. Holland, Kazushi Ikeda ·

Minimizing the empirical risk is a popular training strategy, but for learning tasks where the data may be noisy or heavy-tailed, one may require many observations in order to generalize well. To achieve better performance under less stringent requirements, we introduce a procedure which constructs a robust approximation of the risk gradient for use in an iterative learning routine. Using high-probability bounds on the excess risk of this algorithm, we show that our update does not deviate far from the ideal gradient-based update. Empirical tests using both controlled simulations and real-world benchmark data show that in diverse settings, the proposed procedure can learn more efficiently, using less resources (iterations and observations) while generalizing better.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here