Efficient Linear Bandits through Matrix Sketching

28 Sep 2018  ·  Ilja Kuzborskij, Leonardo Cella, Nicolò Cesa-Bianchi ·

We prove that two popular linear contextual bandit algorithms, OFUL and Thompson Sampling, can be made efficient using Frequent Directions, a deterministic online sketching technique. More precisely, we show that a sketch of size $m$ allows a $\mathcal{O}(md)$ update time for both algorithms, as opposed to $\Omega(d^2)$ required by their non-sketched versions in general (where $d$ is the dimension of context vectors). This computational speedup is accompanied by regret bounds of order $(1+\varepsilon_m)^{3/2}d\sqrt{T}$ for OFUL and of order $\big((1+\varepsilon_m)d\big)^{3/2}\sqrt{T}$ for Thompson Sampling, where $\varepsilon_m$ is bounded by the sum of the tail eigenvalues not covered by the sketch. In particular, when the selected contexts span a subspace of dimension at most $m$, our algorithms have a regret bound matching that of their slower, non-sketched counterparts. Experiments on real-world datasets corroborate our theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here