Efficient Minimax Signal Detection on Graphs

NeurIPS 2014  ·  Jing Qian, Venkatesh Saligrama ·

Several problems such as network intrusion, community detection, and disease outbreak can be described by observations attributed to nodes or edges of a graph. In these applications presence of intrusion, community or disease outbreak is characterized by novel observations on some unknown connected subgraph. These problems can be formulated in terms of optimization of suitable objectives on connected subgraphs, a problem which is generally computationally difficult. We overcome the combinatorics of connectivity by embedding connected subgraphs into linear matrix inequalities (LMI). Computationally efficient tests are then realized by optimizing convex objective functions subject to these LMI constraints. We prove, by means of a novel Euclidean embedding argument, that our tests are minimax optimal for exponential family of distributions on 1-D and 2-D lattices. We show that internal conductance of the connected subgraph family plays a fundamental role in characterizing detectability.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here