Paper

Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space

There is rising interest in vector-space word embeddings and their use in NLP, especially given recent methods for their fast estimation at very large scale. Nearly all this work, however, assumes a single vector per word type ignoring polysemy and thus jeopardizing their usefulness for downstream tasks. We present an extension to the Skip-gram model that efficiently learns multiple embeddings per word type. It differs from recent related work by jointly performing word sense discrimination and embedding learning, by non-parametrically estimating the number of senses per word type, and by its efficiency and scalability. We present new state-of-the-art results in the word similarity in context task and demonstrate its scalability by training with one machine on a corpus of nearly 1 billion tokens in less than 6 hours.

Results in Papers With Code
(↓ scroll down to see all results)