Paper

Efficient On-the-fly Category Retrieval using ConvNets and GPUs

We investigate the gains in precision and speed, that can be obtained by using Convolutional Networks (ConvNets) for on-the-fly retrieval - where classifiers are learnt at run time for a textual query from downloaded images, and used to rank large image or video datasets. We make three contributions: (i) we present an evaluation of state-of-the-art image representations for object category retrieval over standard benchmark datasets containing 1M+ images; (ii) we show that ConvNets can be used to obtain features which are incredibly performant, and yet much lower dimensional than previous state-of-the-art image representations, and that their dimensionality can be reduced further without loss in performance by compression using product quantization or binarization... (read more)

Results in Papers With Code
(↓ scroll down to see all results)