Efficient Online Learning for Dynamic k-Clustering

8 Jun 2021  ·  Dimitris Fotakis, Georgios Piliouras, Stratis Skoulakis ·

We study dynamic clustering problems from the perspective of online learning. We consider an online learning problem, called \textit{Dynamic $k$-Clustering}, in which $k$ centers are maintained in a metric space over time (centers may change positions) such as a dynamically changing set of $r$ clients is served in the best possible way. The connection cost at round $t$ is given by the \textit{$p$-norm} of the vector consisting of the distance of each client to its closest center at round $t$, for some $p\geq 1$ or $p = \infty$. We present a \textit{$\Theta\left( \min(k,r) \right)$-regret} polynomial-time online learning algorithm and show that, under some well-established computational complexity conjectures, \textit{constant-regret} cannot be achieved in polynomial-time. In addition to the efficient solution of Dynamic $k$-Clustering, our work contributes to the long line of research on combinatorial online learning.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here