Efficient Rank Minimization via Solving Non-convexPenalties by Iterative Shrinkage-Thresholding Algorithm

14 Sep 2018  ·  Zaiyi Chen ·

Rank minimization (RM) is a wildly investigated task of finding solutions by exploiting low-rank structure of parameter matrices. Recently, solving RM problem by leveraging non-convex relaxations has received significant attention. It has been demonstrated by some theoretical and experimental work that non-convex relaxation, e.g. Truncated Nuclear Norm Regularization (TNNR) and Reweighted Nuclear Norm Regularization (RNNR), can provide a better approximation of original problems than convex relaxations. However, designing an efficient algorithm with theoretical guarantee remains a challenging problem. In this paper, we propose a simple but efficient proximal-type method, namely Iterative Shrinkage-Thresholding Algorithm(ISTA), with concrete analysis to solve rank minimization problems with both non-convex weighted and reweighted nuclear norm as low-rank regularizers. Theoretically, the proposed method could converge to the critical point under very mild assumptions with the rate in the order of $O(1/T)$. Moreover, the experimental results on both synthetic data and real world data sets show that proposed algorithm outperforms state-of-arts in both efficiency and accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here