Efficient Regression in Metric Spaces via Approximate Lipschitz Extension

18 Nov 2011Lee-Ad GottliebAryeh KontorovichRobert Krauthgamer

We present a framework for performing efficient regression in general metric spaces. Roughly speaking, our regressor predicts the value at a new point by computing a Lipschitz extension --- the smoothest function consistent with the observed data --- after performing structural risk minimization to avoid overfitting... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet