Efficient structure learning with automatic sparsity selection for causal graph processes

11 Jun 2019  ·  Théophile Griveau-Billion, Ben Calderhead ·

We propose a novel algorithm for efficiently computing a sparse directed adjacency matrix from a group of time series following a causal graph process. Our solution is scalable for both dense and sparse graphs and automatically selects the LASSO coefficient to obtain an appropriate number of edges in the adjacency matrix. Current state-of-the-art approaches rely on sparse-matrix-computation libraries to scale, and either avoid automatic selection of the LASSO penalty coefficient or rely on the prediction mean squared error, which is not directly related to the correct number of edges. Instead, we propose a cyclical coordinate descent algorithm that employs two new non-parametric error metrics to automatically select the LASSO coefficient. We demonstrate state-of-the-art performance of our algorithm on simulated stochastic block models and a real dataset of stocks from the S\&P$500$.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here