Efficient Training of Deep Classifiers for Wireless Source Identification using Test SNR Estimates

26 Dec 2019  ·  Xingchen Wang, Shengtai Ju, Xiwen Zhang, Sharan Ramjee, Aly El Gamal ·

We study efficient deep learning training algorithms that process received wireless signals, if a test Signal to Noise Ratio (SNR) estimate is available. We focus on two tasks that facilitate source identification: 1- Identifying the modulation type, 2- Identifying the wireless technology and channel in the 2.4 GHz ISM band. For benchmarking, we rely on recent literature on testing deep learning algorithms against two well-known datasets. We first demonstrate that using training data corresponding only to the test SNR value leads to dramatic reductions in training time while incurring a small loss in average test accuracy, as it improves the accuracy for low SNR values. Further, we show that an erroneous test SNR estimate with a small positive offset is better for training than another having the same error magnitude with a negative offset. Secondly, we introduce a greedy training SNR Boosting algorithm that leads to uniform improvement in accuracy across all tested SNR values, while using a small subset of training SNR values at each test SNR. Finally, we demonstrate the potential of bootstrap aggregating (Bagging) based on training SNR values to improve generalization at low test SNR values with scarcity of training data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods