Efficiently Bounding Optimal Solutions after Small Data Modification in Large-Scale Empirical Risk Minimization

1 Jun 2016  ·  Hiroyuki Hanada, Atsushi Shibagaki, Jun Sakuma, Ichiro Takeuchi ·

We study large-scale classification problems in changing environments where a small part of the dataset is modified, and the effect of the data modification must be quickly incorporated into the classifier. When the entire dataset is large, even if the amount of the data modification is fairly small, the computational cost of re-training the classifier would be prohibitively large... In this paper, we propose a novel method for efficiently incorporating such a data modification effect into the classifier without actually re-training it. The proposed method provides bounds on the unknown optimal classifier with the cost only proportional to the size of the data modification. We demonstrate through numerical experiments that the proposed method provides sufficiently tight bounds with negligible computational costs, especially when a small part of the dataset is modified in a large-scale classification problem. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here