Efficiently Learning One Hidden Layer ReLU Networks From Queries

NeurIPS 2021  ·  Sitan Chen, Adam Klivans, Raghu Meka ·

While the problem of PAC learning neural networks from samples has received considerable attention in recent years, in certain settings like model extraction attacks, it is reasonable to imagine having more than just the ability to observe random labeled examples. Motivated by this, we consider the following problem: given \emph{black-box query access} to a neural network $F$, recover $F$ up to some error. Formally, we show that if $F$ is an arbitrary one hidden layer neural network with ReLU activations, there is an algorithm with query complexity and runtime polynomial in all parameters which outputs a network $F’$ achieving low square loss relative to $F$ with respect to the Gaussian measure. While a number of works in the security literature have proposed and empirically demonstrated the effectiveness of certain algorithms for this problem, ours is to the best of our knowledge the first provable guarantee in this vein.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.