Ego-Pose Estimation and Forecasting as Real-Time PD Control

We propose the use of a proportional-derivative (PD) control based policy learned via reinforcement learning (RL) to estimate and forecast 3D human pose from egocentric videos. The method learns directly from unsegmented egocentric videos and motion capture data consisting of various complex human motions (e.g., crouching, hopping, bending, and motion transitions)... (read more)

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet