Egyptian Arabic to English Statistical Machine Translation System for NIST OpenMT'2015

The paper describes the Egyptian Arabic-to-English statistical machine translation (SMT) system that the QCRI-Columbia-NYUAD (QCN) group submitted to the NIST OpenMT'2015 competition. The competition focused on informal dialectal Arabic, as used in SMS, chat, and speech. Thus, our efforts focused on processing and standardizing Arabic, e.g., using tools such as 3arrib and MADAMIRA. We further trained a phrase-based SMT system using state-of-the-art features and components such as operation sequence model, class-based language model, sparse features, neural network joint model, genre-based hierarchically-interpolated language model, unsupervised transliteration mining, phrase-table merging, and hypothesis combination. Our system ranked second on all three genres.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here