Eigencharacter: An Embedding of Chinese Character Orthography

WS 2019  ·  Yu-Hsiang Tseng, Shu-Kai Hsieh ·

Chinese characters are unique in its logographic nature, which inherently encodes world knowledge through thousands of years evolution. This paper proposes an embedding approach, namely eigencharacter (EC) space, which helps NLP application easily access the knowledge encoded in Chinese orthography. These EC representations are automatically extracted, encode both structural and radical information, and easily integrate with other computational models. We built EC representations of 5,000 Chinese characters, investigated orthography knowledge encoded in ECs, and demonstrated how these ECs identified visually similar characters with both structural and radical information.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here