Eigenvalue analogy for confidence estimation in item-based recommender systems

31 Aug 2018  ·  Maurizio Ferrari Dacrema, Paolo Cremonesi ·

Item-item collaborative filtering (CF) models are a well known and studied family of recommender systems, however current literature does not provide any theoretical explanation of the conditions under which item-based recommendations will succeed or fail. We investigate the existence of an ideal item-based CF method able to make perfect recommendations. This CF model is formalized as an eigenvalue problem, where estimated ratings are equivalent to the true (unknown) ratings multiplied by a user-specific eigenvalue of the similarity matrix. Preliminary experiments show that the magnitude of the eigenvalue is proportional to the accuracy of recommendations for that user and therefore it can provide reliable measure of confidence.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here