Election with Bribed Voter Uncertainty: Hardness and Approximation Algorithm

7 Nov 2018  ·  Lin Chen, Lei Xu, Shouhuai Xu, Zhimin Gao, Weidong Shi ·

Bribery in election (or computational social choice in general) is an important problem that has received a considerable amount of attention. In the classic bribery problem, the briber (or attacker) bribes some voters in attempting to make the briber's designated candidate win an election. In this paper, we introduce a novel variant of the bribery problem, "Election with Bribed Voter Uncertainty" or BVU for short, accommodating the uncertainty that the vote of a bribed voter may or may not be counted. This uncertainty occurs either because a bribed voter may not cast its vote in fear of being caught, or because a bribed voter is indeed caught and therefore its vote is discarded. As a first step towards ultimately understanding and addressing this important problem, we show that it does not admit any multiplicative $O(1)$-approximation algorithm modulo standard complexity assumptions. We further show that there is an approximation algorithm that returns a solution with an additive-$\epsilon$ error in FPT time for any fixed $\epsilon$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here