Electroabsorption in gated GaAs nanophotonic waveguides

11 Feb 2021  ·  Ying Wang, Ravitej Uppu, Xiaoyan Zhou, Camille Papon, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Peter Lodahl, Leonardo Midolo ·

We report on the analysis of electroabsorption in thin GaAs/Al$_{0.3}$Ga$_{0.7}$As nanophotonic waveguides with an embedded $p$-$i$-$n$ junction. By measuring the transmission through waveguides of different lengths, we derive the propagation loss as a function of electric field, wavelength, and temperature. The results are in good agreement with the Franz-Keldysh model of electroabsorption extending over 200 meV below the GaAs bandgap, i.e. in the 910--970 nm wavelength range. We find a pronounced residual absorption in forward bias, which we attribute to Fermi-level pinning at the waveguide surface, producing over 20 dB/mm loss at room temperature. These results are essential for understanding the origin of loss in nanophotonic devices operating in the emission range of self-assembled InAs semiconductor quantum dots, towards the realization of scalable quantum photonic integrated circuits.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optics Materials Science Quantum Physics