Electron pairing in the pseudogap state revealed by shot noise in copper-oxide junctions

4 Dec 2020  ·  Panpan Zhou, Liyang Chen, Yue Liu, Ilya Sochnikov, Anthony T. Bollinger, Myung-Geun Han, Yimei Zhu, Xi He, Ivan Bozovic, Douglas Natelson ·

In the quest to understand high-temperature superconductivity in copper oxides, a vigorous debate has been focused on the pseudogap - a partial gap that opens over portions of the Fermi surface in the 'normal' state above the bulk critical temperature ($T_{c}$). The pseudogap has been attributed to precursor superconductivity, to the existence of preformed pairs, or to competing orders such as charge-density waves. A direct determination of the charge of carriers as a function of temperature and bias could help resolve among these alternatives. Here, we report measurements of the shot noise of tunneling current in high-quality La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$/La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO/LCO/LSCO) heterostructures fabricated using atomic-layer-by-layer molecular beam epitaxy, for several doping levels. The data delineate three distinct regions in the bias voltage-temperature ($V-T$) space. Well outside the superconducting gap region, the shot noise agrees quantitatively with independent tunneling of charge-e carriers. Deep within the gap, shot noise is greatly enhanced, reminiscent of multiple Andreev reflections. Starting above $T_{c}$ and extending to biases much larger than the gap, there is a broad region in which the noise substantially exceeds the expectations of single-charge tunneling, indicating pairing of carriers. Pairs are detectable deep into the pseudogap region of temperature and bias.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Superconductivity Mesoscale and Nanoscale Physics Strongly Correlated Electrons