Elementary Estimators for Graphical Models

We propose a class of closed-form estimators for sparsity-structured graphical models, expressed as exponential family distributions, under high-dimensional settings. Our approach builds on observing the precise manner in which the classical graphical model MLE ``breaks down'' under high-dimensional settings. Our estimator uses a carefully constructed, well-defined and closed-form backward map, and then performs thresholding operations to ensure the desired sparsity structure. We provide a rigorous statistical analysis that shows that surprisingly our simple class of estimators recovers the same asymptotic convergence rates as those of the $\ell_1$-regularized MLEs that are much more difficult to compute. We corroborate this statistical performance, as well as significant computational advantages via simulations of both discrete and Gaussian graphical models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here