Eliminating the Barriers: Demystifying Wi-Fi Baseband Design and Introducing the PicoScenes Wi-Fi Sensing Platform

20 Oct 2020  ·  Zhiping Jiang, Tom H. Luan, Xincheng Ren, Dongtao Lv, Han Hao, Jing Wang, Kun Zhao, Wei Xi, Yueshen Xu, Rui Li ·

The research on Wi-Fi sensing has been thriving over the past decade but the process has not been smooth. Three barriers always hamper the research: unknown baseband design and its influence, inadequate hardware, and the lack of versatile and flexible measurement software. This paper tries to eliminate these barriers through the following work. First, we present an in-depth study of the baseband design of the Qualcomm Atheros AR9300 (QCA9300) NIC. We identify a missing item of the existing CSI model, namely, the CSI distortion, and identify the baseband filter as its origin. We also propose a distortion removal method. Second, we reintroduce both the QCA9300 and software-defined radio (SDR) as powerful hardware for research. For the QCA9300, we unlock the arbitrary tuning of both the carrier frequency and bandwidth. For SDR, we develop a high?performance software implementation of the 802.11a/g/n/ac/ax baseband, allowing users to fully control the baseband and access the complete physical-layer information. Third, we release the PicoScenes software, which supports concurrent CSI measure?ment from multiple QCA9300, Intel Wireless Link (IWL5300) and SDR hardware. PicoScenes features rich low-level controls, packet injection and software baseband implementation. It also allows users to develop their own measurement plugins. Finally, we report state-of-the-art results in the extensive evaluations of the PicoScenes system, such as the >2 GHz available spectrum on the QCA9300, concurrent CSI measurement, and up to 40 kHz and 1 kHz CSI measurement rates achieved by the QCA9300 and SDR. PicoScenes is available at https://ps.zpj.io.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper