EM-RBR: a reinforced framework for knowledge graph completion from reasoning perspective

18 Sep 2020  ·  Zhaochong An, Bozhou Chen, Houde Quan, Qihui Lin, Hongzhi Wang ·

Knowledge graph completion aims to predict the new links in given entities among the knowledge graph (KG). Most mainstream embedding methods focus on fact triplets contained in the given KG, however, ignoring the rich background information provided by logic rules driven from knowledge base implicitly. To solve this problem, in this paper, we propose a general framework, named EM-RBR(embedding and rule-based reasoning), capable of combining the advantages of reasoning based on rules and the state-of-the-art models of embedding. EM-RBR aims to utilize relational background knowledge contained in rules to conduct multi-relation reasoning link prediction rather than superficial vector triangle linkage in embedding models. By this way, we can explore relation between two entities in deeper context to achieve higher accuracy. In experiments, we demonstrate that EM-RBR achieves better performance compared with previous models on FB15k, WN18 and our new dataset FB15k-R, especially the new dataset where our model perform futher better than those state-of-the-arts. We make the implementation of EM-RBR available at https://github.com/1173710224/link-prediction-with-rule-based-reasoning.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here